Focal adhesion signaling and actin stress fibers are dispensable for progression through the ongoing cell cycle.

نویسندگان

  • Coert Margadant
  • Angelique van Opstal
  • Johannes Boonstra
چکیده

Prevention of cell spreading or disruption of actin filaments inhibits growth factor stimulated cell cycle re-entry from quiescence, mainly because of a failure to induce cyclin D expression. Ectopic cyclin D expression overrules anchorage-dependency, suggesting that cell spreading per se is not required as long as cyclin D is otherwise induced. We investigated whether cyclin D expression in cells exiting mitosis is sufficient to drive morphology-independent cell cycle progression in continuously cycling (i.e. not quiescent) cells. Disruption of post-mitotic actin reorganization did not affect substratum reattachment but abolished the formation of filopodia, lamellipodia and ruffles, as well as stress fiber organization, focal adhesion assembly and cell spreading. Furthermore, integrin-mediated focal adhesion kinase (FAK) autophosphorylation and growth factor stimulated p42/p44 mitogen activated protein kinase (MAPK) activation were inhibited. Despite a progressive loss of cyclin D expression in late G1, cyclin E and cyclin A were normally induced. In addition, cells committed to DNA synthesis and completed their entire cycle. Our results demonstrate that post-mitotic disruption of the actin cytoskeleton allows cell cycle progression independent of focal adhesion signaling, cytoskeletal organization and cell shape, presumably because pre-existing cyclin D levels are sufficient to drive cell cycle progression at the M-G1 border.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics

In response to alphabeta1 integrin signaling, transducers such as focal adhesion kinase (FAK) become activated, relaying to specific machineries and triggering distinct cellular responses. By conditionally ablating Fak in skin epidermis and culturing Fak-null keratinocytes, we show that FAK is dispensable for epidermal adhesion and basement membrane assembly, both of which require alphabeta1 in...

متن کامل

Pivotal Role of AKAP12 in the Regulation of Cellular Adhesion Dynamics: Control of Cytoskeletal Architecture, Cell Migration, and Mitogenic Signaling

Cellular dynamics are controlled by key signaling molecules such as cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). AKAP12/SSeCKS/Gravin (AKAP12) is a scaffold protein for PKA and PKC which controls actin-cytoskeleton reorganization in a spatiotemporal manner. AKAP12 also acts as a tumor suppressor which regulates cell-cycle progression and inhibits Src-mediated oncogenic signal...

متن کامل

AFAP-110 is required for actin stress fiber formation and cell adhesion in MDA-MB-231 breast cancer cells.

Regulation of actin organization and dynamics is a highly complex process that involves a number of actin-binding proteins, including capping, branching, severing, sequestering, and cross-linking proteins. The actin-binding and cross-linking protein AFAP-110 is expressed in normal myoepithelial cells. Screening of different breast epithelial cell lines revealed high expression levels of AFAP-11...

متن کامل

Stress fibers are generated by two distinct actin assembly mechanisms in motile cells

Stress fibers play a central role in adhesion, motility, and morphogenesis of eukaryotic cells, but the mechanism of how these and other contractile actomyosin structures are generated is not known. By analyzing stress fiber assembly pathways using live cell microscopy, we revealed that these structures are generated by two distinct mechanisms. Dorsal stress fibers, which are connected to the s...

متن کامل

TSC2 modulates actin cytoskeleton and focal adhesion through TSC1-binding domain and the Rac1 GTPase

Tuberous sclerosis complex (TSC) 1 and TSC2 are thought to be involved in protein translational regulation and cell growth, and loss of their function is a cause of TSC and lymphangioleiomyomatosis (LAM). However, TSC1 also activates Rho and regulates cell adhesion. We found that TSC2 modulates actin dynamics and cell adhesion and the TSC1-binding domain (TSC2-HBD) is essential for this functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 120 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2007